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ABSTRACT

This report identifies methods of stabilization, problems

encountered, and some basic definitions and trends for elastic oscil-

lations. Simplified techniques for filter design for position gyros,

rate gyros, accelerometers, and angle of attack meters are presented.

It has been determined that angle of attack meters and position gyros

should be located at negative bending mode slopes; accelerometers

should be placed at negative bending mode deflection. These bending

modes were normallzed to I at the engine swivel point. The location

of rate gyros depends upon the stabilization philosophy chosen. A

scheme using multi-sensors is presented as a further means of stabili-

zing bendingmodes.
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LIST OF SYMBOLS

Definition

Amplitude of bending at swivel point.

Damping of bending mode due to structure.

Natural frequency of bending mode.

Normalized bending mode deflection at swivel point

( _ i)

Thrust of swivel engine.

First moment of swivel engine about swivel point.

Engine deflection angle.

Generalized mass in bending.

Gain factor of attitude channel.

Coefficient of control damping

Gain factor of _ - channel.

Gain factor of accelerometer channel.

Inter loop gain factor position - channel.

Inter loop gain factor rate gyro - channel.

Inter loop gain factor a - channel.

Inter loop gain factor accelerometer channel.

Bending mode slope at position gyro.

Bending mode slope at rate gyro.
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LIST OF SYMBOLS (CONT'D)

Definition

Bending mode slope at _ - meter.

Bending mode deflection at accelerometer

Effective generalized mass.

Root of characterized equatlon.
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STABILITYCONSIDERATIONSOFA sPACEVEHICLEIN BENDING
OSCILLATIONSFORVARIOUSCONTROLSENSORS

By Robert S. Ryan

SUMMARY

This report identifies methods of stabilization, problems
encountered, and somebasic definitions and trends for elastic oscil-
lations. Simplified techniques for filter design for position gyros,
rate,gyros, accelerometers, and angle of attack meters are presented.
It has been determined that angle of attack meters and position gyros
should be located at negative bending modeslopes; accelerometers
should be placed at negative bending modedeflection. The location of
rate gyros depends upon the stabilization philosophy chosen. A scheme
using multi-sensors is presented as a further meansof stabilizing
bending modes.

SECTIONI. INTRODUCTION

The general stability studies of a space vehicle proceed along
conventional lines. First,.the equations of motion of the system are
derived by use of Lagrange's equation. Second, the control equations
are derived as a meansof expressing the coupling between the control
system and vehicle motions. Third, the linearized equations are trans-
formed into algebraic equations by assuminga solution in the form of
est where s is complex. This leads to a characteristic equation, the
roots of which determine the stability of the system. This type of
analysis (root study of total system) is very good and leads to valuable
information about the effect of coupling between various modes of oscil-

lation and the stability of the final system. It has the disadvantage

that insight into the physical behavior is lost when a large number of

degrees of freedom is taken. It also has the disadvantage that large

blocks of computer time are required to evaluate the system. Even with

these drawbacks, it is a necessary evaluation.



Since extensive work has been done with this approach [2-8], no
details are given here. In these reports, stability trends were estab-
lished as well as certain simplifications to the equations; however, they
did not, in general, completely de-fine stability trends and design criteria
needed for quick look studies. The quick look trends for sloshing have
already been well established [9-12] as stability boundaries and are not
repeated. This report establishes sometrends and design criteria for
elastic oscillation stability. This is accomplished by simplifying the
equations of motion and then approximating the root loci.

SECTIONII. BASICDEFINITIONSANDSIMPLIFIEDSTABILIZATIONMETHODS

The stabilization of a space vehicle in elastic oscillations is a
major problem of control system design. This problem is intensified
when shaping of the bending mode signal alters the stability of sloshing
and control mode"oscillations. This problem is more pronouncedas the
bending mode frequencies becomelower. The purpose of this report is to
identify methods of stabilization, problems encountered, and somebasic
definitions and trends for elastic oscillations.

A good picture of bending modestability and design philosophy can
be achieved by assuming that there exists no coupling between the bending
modesand that aerodynamics, sloshing, and the control modehave only a
negligible effect upon the bending modestability. With these assumptions,
the bending modeequation becomes[i]

2
+ 2_B _0B _ + coB _ -

YE(F - _ SE)_

MB (1)

The bending mode shapes are normalized to unity at the swivel point, so

that YE _ i.

If the control system is assumed to be ideal, the control equation

can be written in general form as

+bo Kk <2)

where _ _k_ +O_, apd &_ are the angular displacement, angular rate,

angle o_ attack and la6e_al acceleration as indicated by the various
control sensors. The acceleration term was introduced in equation (2)

as __e YA instead of _YA to simplify solution of the differential equation
(i.e._ keep it a second order equation). For ideal sensors

% = q9 - Z nM Y_(XqD)



0k = ¢ - E _k Y_(Xk)

!

(Y_= _0 - Z Nk Yk (XU) - y (3)
v

2
A_ = _ - mB ?' _k Yk (XA)

The gains appearing under the summation sign are inter-loop gains in-

serted for flexibility in control system design. The rigid body gains

are ao, al, bo, and g2. It is clear that the sum of the K_ for each

sensor group (inter-loop gains) must always equal one so that rigid

body stability is guaranteed. Multi-sensors are introduced, since

blending of signals from more than one sensor can offer means of elimi-

nating undesirable bending mode signals. This is accomplished by a

proper choice of sensor locations and the inter-loop gain factors K k.

Considering the case where the vehicle oscillates in one bending

mode (no rigid body motion), the terms of the control equation (2)
become

= - o Zk K_ Y' - a: Z K k _YkR bo Kk y, ora _ kcp k - _ _ _ - g2 Z K k _c0B YkA"
,' k

(4)

If the system is treated as nonideal, lag effects of actuator and

filters in the control loop terms must be included to take care of gain

and phase changes as a function of the frequency (_). Considering only

one sensor of each type and these additional frequency effects, the

control equation becomes

= - a Kl(_)ei_'(_)N Y' - alKe(_)e i_e(_) _ y_
o

- Do K3(_) ei_3(_)_ NYI_ or ge K4(_)ei_4(m)_ mB2 NYA "

(5)

The Kk. 's and _i 's (i = i _ 4) are the frequency dependent gains

and _hase6"of the control loops including actuator and filters, where

the Kk,S are products of the gains of the individual components and the
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_,s are the stnn of the phase of individual components. The exponential

function in equation (5) can be replaced by

e i_i(_) = cos _i (_) + i sin _i (_)"

If it is assumed that the coupled frequency is near the actual

bending mode frequency (_) and the phase and gain terms are slowl_
varying, then all gain ana phase terms become a function of mB" Under
this assumption, these phase and gain terms can be considered as con-

stants in the differential equation. Under the same assumption, the

imaginary i can be eliminated by dividing by _B and taking a time
derivative of the variable. Performing these operations, the control

equation becomes

r l

_=- a Kl(_0B) Y' kn cos _l(_B ) +_- sin _I((OB)_I
o qD oa_

-al Ke(w B) Y_ [_ cos _e(_B)-_B_ sin _e(_B) ]

- b K3(COB) B _3(COB) + _- sin @3(_B)

or

-g2 K4(_ B) YA [n_B cos _4(OJB)+ _ _B sin _4(_B) ?

(7)-

Substituting equation (_) into equation (I), the second order

differential equation describing the oscillation of a space vehicle in

one bending mode coupled with the control system becomes

[ 2_B _B a Kl(_B) Y' YE[F - SE _]+ • + o _ sin _z(_B)

_B MB

+ alKe(_B)

, 2]YR YE [F - SE _B

cos @e(_B) +



+b
o

K3(w B) YG YE IF - SEW B]

sin _3 (WB)

or

g2K4(w B)

'WB YA YE [F - SE w_] sin _4(WB) j

a
o El(wB)

Y' YE[F- SE WB] cos qOi(WB) -

- a I

WB YR YE K2(WB)

[F - S E we]B sin _2(WB) +

b
o -[F - w_-S E] cos _3(WB)

or

K4(W B)

g2c_ _

7
YA WB2 YE [F . WB2 SE ] cos @4(WB) I D = 0

3

The characteristic equation of this homogeneous differential

equation for a subcritically damped system leads to a pair of con-

jugate complex roots (S = _ ± iw'), the real part depicting stability

and the imaginary part denoting the coupled frequency ih rad/sec. For

the present system, the solution is

(_ --

m _ B LOB
a (wB) Y-Y 

[F - SE w_] sin _i (wB)
-- Q

2wB M B
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- 1/2 B) --
YR YE

[F - SE co_] cos 92 (wB)

K3(COB) Y_ YE
- 1/2 b --

o COB MB

or

K4(COB)
- 1/2 ge

%

IF - SE _] sin 93 (coB)

COB YA YE [F - SE co_] sin 94 (_B)
(9)

and

CO

I 2

- 02 + CO--BMB---+ a KI(COB) Y_ YE IF - SE co_] cos 91 (cOB )

o

al coB ' YE Ke(coB) [F - 2 SE ] sin _e(coB)
M B YR coB

m

+ bo K_(mB)--- --

!

YC_ YE

[F - SE co_] cos 93 (COB)

or

ge F'4(_B) YA YE IF- SE COB] co_ cos @4 (COB)I½
% ,

(10)

An examination of equations (9) and (i0) reveals several im-

portant trends. First, let us consider that only one channel is

operating and that this channel is the rate gyro channel. Then

equations (9) - (I0) become

-_B coB K2(coB) YR YE
= - 1/2 al

M B

[F - SE co_] cos 92 (coB) (n)



and

co = qe + 002 • YR [F - SE coB ] sin (pc(coB . (12)
B MB

Two terms appear in equation (ii) for damping:

with the structure

one is associated

and one with the control feedback:

- 1/2 a I
MB , e SE ] cos @m (COB)-- YR YE [F - COB

Comparing these two terms, it is clear that there exists a threshold

value for the feedback term, defined where the structure term equals the

feedback term. If the relationship

>
Ke(coB) YR YE

al MB [F - SE co_] cos @2 (coB) (13)

is satisfied the structure damping term is dominant and damping is

always present in thesystem regardless of the phase or sensor location.

This leads to a means of expressing a gain criterion for stability. To

determine this gain criterion, _e is assumed to be equal to zero which

yields the following equality for Ke as an upper boundary:

K2 !coB)
% Ial Y' YE[F - SE co_] "R

(14a)

As long as the filter produces a total loop galn lower than the above

equality, the bending mode is stabilized with respect to the rate gyro

loop.

m



This K2(_B) is important in stability considerations since it gives

a quick estimate of the attenuation which filters must provide for

stabilization.

It is easily obtained by determining the gain values for all known

components in the control loop at the bending mode frequency mB" Accord-

ing to the relationship

Km(Filter) K2(Actuator) K2(Sensor) = K2 (14b)

which gives the attenuation value of the filter,

Ke (!4c)
K2(Filter) = K2(actuator) Ke(sensor)

Similar gain criteria are obtained for other type sensors.

are :

The terms

Position gyro
12_ B MB _ I

(15a)

Rate gyro
12 B MB _B Ial YR YE [F - SE _0B]

(15b)

- meters
IK3(_B) 2%MB%

bo Y_ YE [F- SE ¢0_]
(15c)

I I [Accelerometers _(_B ) -- ge YA YE [F - SE 0JB] (15d)

If % is less than one, it represents the percentage of attenua-
tion needed in the'loop for gain stabilization. It is clear that

values of _ larger than one indicate that the system is gain stable
in the bendlng mode, since a gain greater than one means that the
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filter must prdvlde an {nt_e_se6 gain to move the root from the stable

plane to a neutral stable poaition. The above method and results have

been verified by root locus studies for multi-degree-of-freedom systems
and will be dischssed in more detail later.

Equation (]I) allows also to establish a phase criterion for

stability of bending modes. Consider that the absolute value of the

control feedback term is larger than the structural term; then stabi-

lization must be accomplished by choosing a sign of the control feed-

back term. This can be accomplished in two ways: (i) By choosing the

location of the sensor,to give the proper sign of Y_ or (2) by putting

in a phase shaping network so that cos _2(_B) produces the correct sign

of the signal needed for stability.

Not only is the stability (a) of the system affected by the control

system, but also the frequency (w) is changed (cf., equation_ (il) and

(i_)). The control system acts to increase or decrease the restoring

force of the system, depending upon sensor location and control loop

phase.

It can be shown from equations (ii) and (12), if the gain K (wR)

is kept constant and sufficiently small, that the root locus is baslcally

a circle with phase as a parameter. Equation (12) can be written as

we + am = WBe + A cos _2(WB),

where

a lwB K2 Y_ YE [F - SE w_]

(16)

(17)

If -_B WB is defined as _B, the part of a due to structural damping,

then equation (II) becomes

. A sin _2(WB) = - - cos 2 _2(WB).
- o-B = 2w B

(18)

Then

4WB (_ - _B )2 A2 . 4w B (_ - aB)2

cos _e(WB) = i A2 -- Ae
(19)

Now

we + se e + _A e e (a eJ
= wB - 4_B - aB) ,

(20)



i0

Or

2 + 02)2 A2 2 (_ . aB)2"(_2 . _B = - 4_B (21)

Expanding the left hand side of equation (21) and asst=ning that the

gain is sufficiently small so that

. o2A2 >> 4_B(_ _B) - o4, (22)

then

(_ A.____ A << 2_. (23)
_max " _B)max 2 B

and

(_a _ _e_eB._ (2_B)e (_ - _B )2 = A2 - 4_; (O - OB)e (24)

Now

A 2

(_- _B)2 + (o - _B)2 = (2--_B),

which is the equation of a circle with the center at +_B' _B (Figure i).

270 e PHASE

90=PHASE

_--_ CENTER OF

.i_80o ROOT LOCll
PHASE

-(7 O"

Figure I: Typical Plot with Phase as Parameters

Closer examination of equations _9) and(10) reveals specific trends

important in control system design. These trends are different for

different sensors, and will now be discussed separately. In the following
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consideration, the system has no structural damping and all bending modes
are considered to be normalized to I at the swivel point.

P_sition Gyro_ _ - meters_ Accelerometers

i. The first consideration is commonly called tail-wags-dog effect.

This effect occurs when the lateral component of the thrust is cancelled

by the inertial force of the engine (F = _ SE). For all coB >
there is a 180 ° change in the phase requirements, reversing all trends

given.

2. If there is no phase lag in the system the stability of the

bending mode is not affected by the location of the control sensors

(position gyro, _ - meters, or accelerometers). The location of the

sensors do determine, however, whether the control system increases or

decreases the frequency. A negative bending mode slope (or deflection

for accelerometer) at the sensor location decreases the frequency while

a positive value increases the frequency. The above is reversed for

_B > F_7_E • If it is considered that there are phase lags in the

system, the effect of these lags upon stability depends upon the sensor

location. For sensors located at a negative slope (or deflection for

accelerometer), phase lags of 0 to 90 ° increase the stability with the

maximum stability occurring at 90 °, additiona_ lags from 90 ° _ 180 °

decrease the stability, but the bending mode remains stable until 180 °

phase is reached. Phases of 180 ° _ 360 ° are in the instable region with

maximum instability occurring at 270 ° lag or 90 ° lead. Location of the

sensor at positive slopes (or deflection for accelerometers) reverse the

above considerations as does mB >_FTSE. Now a diagram can be constructed
to depict these trends.

a. Position Gyro_ Accelerom°eters

CE- METERS

_iO./

INCREASING

LAG

___ 90=LAG
9o"LAG

I NCREAS ING
LAG

-Or o"

Figure 2: Lag Effects upon Stability

0 ° Phase I

_B < _E

0 ° Phase

_B > S_E

X positive slopes

positive deflection
for accelerometers

O negative slopes

negative deflection

for accelerometers

positive slopes

positive deflection

for accelerometers

X negative slopes

negative deflection

for accelerometers
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The source of the lags are not important although someadverse
effects can be found for excessive gains, or poorly chosen filter zeros
and poles.

b. Rate Gyros

The above discussion does not apply to rate gyros since the

rate gyro location places the stability at either the maximum or minimum

position for an ideal control system. Positive slopes for _B < F_7_E

give maximum stability and negative slopes give maximum instability.

Therefore, movement of the root with increasing phase lag is in the

instable direction for positive slopes and in the stable direction for

negative slopes. The above consideration is switched 180 ° for

_B > _ • In each case, the stability axis is crossed when 90 ° lag
is reached. The following diagram illustrates the root locus.

iW

_NCREASING

LAG

-& o"
r Figure 3: Lag Effects upon Stability

0 ° Phase
X positive slopes
O negative slopes

0 ° Phase X

positive slopes

negative slopes

It iS clear that the above generalizations were made for one sensor;

however, the use of more than one sensor does not destroy the use of the

analogy, since the total signal is the sum of the voltage coming from each

control loop. The construction of the root locus, however, is complicated

slightly.

In the previous generalization, some basic criteria have been estab-

lished; however, the limitation has been placed upon the system that the

gains must be low enough so that the coupling between the bending is

negligible. This is usually a good criterion on which to base a control

system design; however, this gain limit is not easy to determine. To
arrive at some reasonable definition, the phase root locusstudy of the

total system was made [2-4]. Unusual results occurred if the gain was

too high (Figure 4).
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GAiN

GAIN REDUCED BY

A FACTOR 4

30°

240°

,300 °

0
o

Figure 4: Phase Root Locus Study of a Space Vehicle

Including Three Bending Modes

The high gains in the system create a strong coupling between

modes, making a good stabilization solution practically impossible;

however, if the.total loop gain is reduced by a factor of 4, the

system is decoupled and a desirable solution is obtainable. An exact

criterion is not obtainable in simple form for this upper gain level;

however, a good approximation can be obtained. This approximation is

that the frequency shift due to the control loop should not be more

than 30% of the distance, in the e-direction, between two natural fre-

quencies. Based upon this maximum root shift, the following relation-

ships for the maximum gain tolerable for each sensor (for phase stabi-

lization) are from equation (i0)_

Position gyro
- I

aoY_oYE[F - SE_1 I (16a)

Rate Gyro < , _ (16b)
- al YR YE [F - _B SE] °°B
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- meter
bo-Y_YE[F - _BSE1

(16c)

Accelerometers 09(_ - _) .B Ig2YAYEIF""SE _0B]00_
(16d)

where _i and _. are two adjacent natural frequencies.J

Up to this point, we have established the phase and gain levels

necessary for good control system design for a space vehicle in body

bending. Also the stability trends of the system were established.

SECTTON III. APPLICATION TO MULTI-SENSORS

As mentioned previously, more than one sensor can be used as a

means of reducing gain or phase requirements of design hardware. To

accomplish this, two or more sensors are located at various places on

the vehicle. Separate gain values of the sensors are chosen, and the

signals are added or subtracted depending upon what is desired. One

must maintain, however, the rigid body signal at appropriate gain levels.

To illustrate, let us consider two accelerometers and the vehicle oscil-

lating in one bending mode, and rigid body modes (rotation and transla-

tion).

Equation (2) becomes

_ = g2 [Kl<-Xz _ + _ Y(XI))+ K2<" Xe _ + _ Y(X2))

+ (El + K2) Y].
(17)

If ga is defined as the rigid body gain, then it is clear that

Kz + Ke must equal I. Also from rigid body control, the coefficients

of _ and _ are superfluous; therefore, we can determine KI and K2 and

Xz and X2 by setting the coefficients of _ and _ equal to zero. This

leads to the following relationships:

Kz + K2 = I (18)



15

(I9)

Kl Y(XI) + K2 Y(X2) --0 . (20)

Usually a graphical solution is sufficient for determining these

sensor locations and gain values. Since sensor locations cannot be

changed with time, some residue signal will be present if the gain

values are kept constant. To see the effect of this residue signal

and its sensitivity to gain changes and mode shape changes, the pre-

viously derived equations (9) - (16) are still valid if Ya is replaced
by Kl Y(XI) + Ke Y(X2). (K I and K2 are not restricted to positive

numbers; only the sum must be positive.)

Multi-sensor schemes are not limited to two accelerometers, or to

one bending mode. The use of the idea is up to the ingenuity of the

design engineer. It is clear that the accomplishment of the scheme

increases in difficulty proportionally to the number of modes and

sensors considered. Relationships for using multi-sensor schemes for

rate gyros, etc., are not presented, but can be accomplished in the
same manner.

SECTION IV. APPLICATION OF RESULTS TO CONTROL FILTER DESIGN

Until now the only consideration has been the stability of the

system in bending mode oscillations. Nothing has been sald concerning

propellant oscillations, control mode, or vehicle response. The

accomplishment of bending mode stability can result in destabilization

or poor response in the above mentioned modes, as was shown in Refer-

ence 2. This must be avoided as far as possible and some compromise

solution worked out. Also poor location of zeros and poles of the

filter transfer function can intensify this problem [2]. Once filters

have been designed, the response and stability of the total system

must be checked and final adjustments made.

To apply these results to filter synthesis, a decision must be

made as to the type of stabilization to be used. This is very important

in choosing sensor location. For example, if the second mode is to be

galnstabilized and the first mode phase stabilized, it may be better

to locate a rate gyro at a negative slope of the first mode since lags

of actuator produces a trend toward stability, as does the lag needed

to get the necessary second mode attenuation. This brings into play

a well known fact of minimum phase systems, namely, that there exists

a one-to-one relationship between gain and phase [4]. This one-to-one

relationship means that, if phase is known, gain can be determined and,
if gain is known, the phase can be determined. Itls clear also that

phase lags and attenuation occur simultaneously as does phase lead and

increasedgain.
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Once the stabilization philosophy has been chosen and sensor

locations determined, the upper and lower threshold values for the

filters are computed for each mode and sensor. Upper gain limits are

needed only for phase stabilized modes. Using the upper gain limit,

a phase root locus is made for each mode to be phase stabilized. All

information needed to make a preliminary filter design is now avail-

able. This is accomplished by drawing a gain and phase curve as a

function of frequency for the points known. For example, the case

under consideration gives the phase at the first mode frequency and

the gains at higher modes. The curves are shown in Figures 5 and 6.

PHASE
LAG

30O

240

180

12C

GO

0

LI
I

- i
I
I

' I
J I
i I
I r

I I f NOP_SlEI I.C
I klESTRIC_

I
l _ I .j

_! i /r" i

J' J' i o.o
==l LIUlTS.." I

_! I, I o
MODE M ODE

GAIN

I
I

I 1 I I

.L_"IER_',J-
L,.,_ I f l

I 1 I
"I'\

\ I I I\\1 I I
, LOWER \i

I LIMITN, I I

- I I ,
i % \\ I/o-lE_ I

CONTROL /STDIr _NDDIE _IRo%E f

Fig. 5: Filter Phase Requirements Fig. 6: Filter Gain Requirements

It is clear that the gain and phase of the first mode must fall

in the region indicated. The gain for the second and third mode must

fall below those shown; they are not allowed to become larger for gain

stabilization. The above regions give the bounds, any values between

which will satisfy stability; however, the influence on other modes

(control sloshing) must be checked and compromises made within these

established phase and gain bounds. If a solution is not apparent, a

new stabilization scheme (phase stabilized higher modes, etc.) or con-

trol system is chosen.
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These gain and phase curves supply the designer with transfer

function tolerances for the filters in each control channel. Whether or

not this transfer function Can be realized is beyond the scope of this

report.

SECTION V. CONCLUSIONS

This study of the stability characteristics can be greatly facili-

tated by the simplified approach presented above. Using the following

basic conclusions, preliminary filter transfer functions can be obtained

for hardware.design.

i. Angle-of-attack meter, position gyro, and accelerometer

locations do not essentially affect the stability of the system in body

bending. These locations only increase or decrease the restoring force

of the system, thereby increasing or decreasing the coupled frequency.

Negative deflections (for accelerometers) or slopes (for angle-of-attack

meters and position gyros) decrease the frequency and positive values

increase the frequency. If tail-wags-dog effect is included, the trends

are reversed 180 °. This point of stability or frequency shift occurs

when _B > _F/SE"

2. The introduction of phase lag into the loop for angle-of-attack

meter, position gyros, and accelerometers moves the root toward stability

if the bending mode slope or (deflection in case of accelerometers) is

negative, and toward instability when these values are positive. Location

of these sensors at negative bending mode values (slopes or deflection) is

advisable for lower frequency bending modes since phase shifts of the

actuator will move the roots in a stable direction. It is important that

these sensors have a 180 ° phase margin before instability is reached.

3. Rate gyros give maximum stability and very little frequency shift

when located at positive bending mode slope values and maximum instability
when located at negative bending mode slope values. The shift of the root

with increasing phase lag is toward instability for positive bending slope
values and toward stability for negative slope values. The root crosses

the stability axis when 90 ° phase lag has been added moving to instability

for the positive slopes and to stability for negative slopes.

4. Rate gyro locations should be chosen in terms of stabilization

desired. Gain stabilized second and higher modes create lags at the

first mode. When these lags are added to the actuator lags, instability
could result if positive slope locations were chosen. To correct for

this, phase lead must be added to the system giving an increased gain,

This increased gain in general is undesirable, since it could endanger

the sloshing stability. Locating rate gyros at negative slopes and

gain stabilizing second and higher modes could lead to a phase stabilized

first mode at lower gain levels. This has the disadvantage of introducing
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lags at sloshing and control modefrequencies creating low stability
margins. However, the gain is generally lowered at the sloshing mode,
somewhatreducing the detrimental phase effect upon propellant sloshing
stability.

5. The use of multi-sensors can greatly alleviate bending mode
signal gains in the feedback loop. It is clear that somereliability
is lost from use of multi-sensors; however, this is compensatedto a
great extent by the simplicity of the system.

6. Generally, angle-of-attack meters and position gyros offer the
least difficulty in bending modestabilization since the gain is low.
Rate gyros are next in stabilization complexity because the gain increases
linearly with the bending modefrequency (_B). Accelerometers offer the
most difficulty since the gain increases with the square of the frequency

7. It is usually desirable to phase stabilize bending modesby
introducing phase lags instead of lead into the system, since an increase
in gain is apparent whenphase lead is introduced. Phase lags produce
gain attenuation.
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